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Abstract. When considering distributed systems, it is a central idsog to
deal with interactions between components. In this paper,mwestigate the
paradigms of synchronous and asynchronous interactioheircontext of dis-
tributed systems. We investigate to what extent or undechvbonditions syn-
chronous interaction is a valid concept for specificatiod emplementation of
such systems. We choose Petri nets a our system model andearodiferent
notions of distribution by associating locations to eletsesf nets. First, we in-
vestigate the concept of simultaneity which is inherenhim $emantics of Petri
nets when transitions have multiple input places. We asshat¢okens may only
be taken instantaneously by transitions on the same locatie exhibit a hier-
archy of ‘asynchronous’ Petri net classes by different mggions on possible
distributions. Alternatively, we assume that the syncheations specified in a
Petri net are crucial system properties. Hence transifiondsheir preplaces may
no longer placed on separate locations. We then answer #sioo which sys-
tems may be implemented in a distributed way without retstigcconcurrency,
assuming that locations are inherently sequential. Istonrt that in both settings
we find semi-structural properties of Petri nets descrilexactly the problematic
situations for interactions in distributed systems.

1 Introduction

In this paper, we address interaction patterns in disgithstystems. By a distributed
system we understand here a system which is executed oalgpadistributed locations,
which do not share a common clock (for performance reasansxeample). We want
to investigate to what extent or under which conditions fyanous interaction is a
valid concept for specification and implementation of sugstems. It is for example
a well-known fact that synchronous communication can beikited by asynchronous
communication using suitable protocols. However, the tioiess whether and under
which circumstances these protocols fully retain the aagbehaviour of a system.
What we are interested in here are precise descriptions af md¢haviours can possibly
be preserved and which cannot.

The topic considered here is by no means a new one. We giverbosieoview on
related approaches in the following.

* Supported by DAAD (Deutscher Akademischer Austauschd)ievisile visiting NICTA.
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Already in the 80th, Luc Bougé considered a similar probieitihe context of dis-
tributed algorithms. In [5] he considers the problem of iempenting symmetric leader
election in the sublanguages of CSP obtained by allowirfgraifiit forms of communi-
cation, combining input and output guards in guarded choidéferent ways. He finds
that the possibility of implementing leader election degseheavily on the structure of
the communication graphs. Truly symmetric schemes are po$gible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many langufiesystem specifi-
cation and design, e.g. in statechart-based approachpspdess algebras or the
calculus. For process algebras and thealculus, language hierarchies have been es-
tablished which exhibit the expressive power of differemtis of synchronous and
asynchronous interaction. In [4] Frank de Boer and CatuRalamidessi consider var-
ious dialects of CSP with differing degrees of asynchronyil@r work is done for the
m-calculus in [15] by Catuscia Palamidessi, in [13] by Uwe tenn and in [8] by Di-
anele Gorla. A rich hierarchy of asynchronoeusalculi has been mapped out in these
papers. Again mixed-choice, i.e. the ability to combineuirgnd output guards in a sin-
gle choice, plays a central rdle in the implementation affytsynchronous behaviour.

In [17], Peter Selinger considers labelled transition esyst whose visible actions
are partitioned into input and output actions. He defineaasypnous implementations
of such a system by composing it with in- and output queues then characterises
the systems that are behaviourally equivalent to their @aymous implementations.
The main difference with our approach is that we focus on @ssony within a sys-
tem, whereas Selinger focusses on the asynchronous natheeammmunications of a
system with the outside world.

Also in hardware design it is an intriguing quest to use Btéon mechanisms
which do not rely on a global clock, in order to gain performarHere the simulation
of synchrony by asynchrony can be a crucial issue, see ftarins [10] and [11].

In contrast to the approaches based on language consikectié work on CSP
or thew-calculus, we choose here a very basic system model for @estigations,
namely Petri nets. The main reason for this choice is thelddteay in which a Petri
net represents a concurrent system, including the inierabetween the components
it may consist of. In an interleaving based model of concwyesuch as labelled tran-
sition systems modulo bisimulation semantics, a systemesemntation as such cannot
be said to contain synchronous or asynchronous interaciiopest these are proper-
ties of composition operators, or communication primgiveéefined in terms of such a
model. A Petri net on the other hand displays enough detailafncurrent system to
make the presence of synchronous communication discerriihis makes it possible
to study synchronous and asynchronous interaction witbiguessing to the realm of
composition operators.

Also in Petri net theory, the topic which concerns us heredfteady been tackled.
It has been investigated in [9] and [18] whether and how & Retrcan be implemented
in a distributed way. We will comment on these and other eelgtapers in the area of
Petri net theory in the conclusion.

In a Petri net, a transition interacts with its preplacesdrystuming tokens. In Petri
net semantics, taking a token is usually considered as &miasieous action, hence
a synchronous interaction between a transition and itslgeepln particular when a
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transition has several preplaces this becomes a cruaig!. ibsthis paper we investigate
what happens if we consider a Petri net as a specification gki@ra that is to be
implemented in a distributed way. For this we introduce fmees on which all elements
of a Petri net have to be placed upon. The basic assumptibati;nteraction between
remote components takes time. In our framework this meaigstib removal of a token
will be considered instantaneous only if the removing titisrsand the place where the
token is removed from are co-located. Our investigatioasamw twofold.

In Section 3 of this paper, we consider under which circuntsta the synchronous
interaction between a transition and its preplace may bdackad asynchronously, thus
allowing to put places and their posttransitions on diffétecations. Following [6], we
model the asynchronous interaction between transitiod$tair preplaces by inserting
silent (unobservable) transitions between them. We ifyatst the effect of this trans-
formation by comparing the behaviours of nets before aref &fsertion of the silent
transitions using a suitable equivalence notion. We belteat most of our results are
independent of the precise choice of this equivalence. Mewas explained in Sec-
tion 5, it has to preserve causality, branching time andrdiece to some small extent,
and needs to abstract from silent transitions. Thereforehase one such equiva-
lence, based on its technical convenience in establishingesults. Our choice istep
readiness equivalenc# is a variant of theeadiness equivalenc# [14], obtained by
collecting the set oftepsof multiple actions possible after a certain sequence of ac-
tions, instead of just the set of possible actions. We caktaasynchronoudf, for a
suitable placement of its places and transitions, the abwationed transformation re-
placing synchronous by asynchronous interaction presesteg readiness equivalence.
Depending on the allowed placements, we obtain a hierarfatigsses of asynchronous
nets: fully asynchronousiets, symmetrically asynchronousets andasymmetrically
asynchronousets. We give semi-structural properties that charaet@riecisely when
a net falls into one of these classes. This puts the resoits 6] in a uniform frame-
work and extends them by introducing a simpler notion of asgtnic asynchrony.

In Sections 4 and 5 we pursue an alternative approach. Wenasthat the syn-
chronisations specified in a Petri net are crucial systermpepties. Hence we enforce
co-locality between a transition and all its preplaces a/ail the same time assum-
ing that concurrent activity is not possible at a single tmea We call nets fulfilling
these requirementistributedand investigate which behaviours can be implemented by
distributed nets. Again we compare the behaviours up to rtaginess equivalence.
We call a netdistributableiff its behaviour can be equivalently produced by a dis-
tributed net. We give a behavioural and a semi-structuratadterisation of a class of
non-distributable nets, thereby exhibiting behaviourgcwltannot be implemented in
a distributed way at all. Finally, we give a lower bound oftdizitability by providing
a concrete distributed implementation for a wide range t$.ne

2 Basic Notions

We consider here 1-safe net systems, i.e. places neverrnarg/than one token, but a
transition can fire even if pre- and postset intersect.
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Definition 1. Let Act be a set ofisible actionsandr ¢ Act be aninvisible action
A labelled netlover Act) is a tupleV = (S, T, F, My, ¢) where

— Sis aset (ofplacey,

— T'is a set (otransitiony,

— FCSxTUT x S (theflow relation),

— My C S (theinitial marking) and

— (:T — Act U {7} (thelabelling function).

Petri nets are depicted by drawing the places as circledrdhsitions as boxes con-
taining the respective label, and the flow relation as arf@ncs) between them. When

a Petri net represents a concurrent system, a global statebfa system is given as a
marking a set of places, the initial state beifg,. A marking is depicted by placing
a dot token in each of its places. The dynamic behaviour of the reptesesystem is
defined by describing the possible moves between markinggaking M may evolve
into a markingM’ when a nonempty set of transitionsfires In that case, for each
arc(s,t) € I leading to a transition in GG, a token moves along that arc frosrio ¢.
Naturally, this can happen only if all these tokens are atéd in M in the first place.
These tokens are consumed by the firing, but also new tokerngeated, namely one
for every outgoing arc of a transition i#. These end up in the places at the end of
those arcs. A problem occurs when as a result of fitthgnultiple tokens end up in
the same place. In that cad€ would not be a marking as defined above. In this paper
we restrict attention to nets in which this never happenshSwets are called-safe
Unfortunately, in order to formally define this class of nete first need to correctly
define the firing rule without assuming 1-safety. Below we hkis by forbidding the
firing of sets of transitions when this might put multiple émls in the same place.

Definition 2. Let N = (S, T, F, My, ¢) be a labelled net. Let/;, M> C S.
We denote the preset and postset of a net elements UT by *z := {y | (v,z) € F'}
andz® := {y | (z,y) € F} respectively. These functions are extended to sets in the
usual manner, i.¢.X :={y |y €z, x € X}.

A nonempty set of transition§ C T,G # 0, is called astep fromM; to Mo,
notationM; [G)n Mo, iff

— all transitions contained i&¥ areenabledthat is
Vte G .t C My A (M \*t)Nt* =0,
— all transitions ofG areindependenthat isnot conflicting
Vibue Git#u. tNu=0At"Nu® =10,

— in M, all tokens have been removed from fhreplacesf G and new tokens have
been inserted at theostplacesf G:

My = (M, \ *G)UG"®.

To simplify statements about possible behaviours of netsse some abbreviations.
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Definition 3. Let N = (S, T, F, My, ¢) be a labelled net.

We extend the labelling functiofhto (multi)sets elementwise.

—n C :P(S) X H\IACt X iP(S) is given byMl iﬁv My, < 3G CT. My [G)N Moy A
A=1{(G)

Tsn CP(S)x P(S) is defined byM; ——n My < T U(t)=T7AM; [{t})n M-

—n C P(9) x Act* x P(S) is defined byM; =220 v M, &

R G S Al i3 S AU ANl G SV Sy A

Wherei»jv denotes the reflexive and transitive closure-f .

We WriteM1 iﬁv for dMs. M,y iﬁv Moy, My —/A—>N for ﬂMg M, iﬁv Ms and

similar for the other two relations. Likewis®/ [G) y abbreviateSM,. M;[G)n M.

A marking M, is said to baeachabléff there is ac € Act* such thatM, ==y M.

The set of all reachable markings is denoted ) v .

We omit the subscrip¥ if clear from context.
As said before, here we only want to consider 1-safe netsn&by, we restrict
ourselves tacontact-free netswhere in every reachable markidd; € [M,) for all

tETWlth.thl o R
(Mp\*t)nt*=10.

For such nets, in Definition 2 we can just as well consider msitn ¢ to be enabled
in M iff *t C M, and two transitions to be independent wlem *u = (.

In this paper we furthermore restrict attention to nets fowolk *¢ # (), and*t
andt® are finite for allt € T. We also require the initial marking/, to be finite.
A consequence of these restrictions is that all reachabtkings are finite, and it can
never happen that infinitely many independent transitioagnabled. Henceforth, with
netwe mean a labelled net obeying the above restrictions.

In our nets transitions are labelled witlctionsdrawn from a set Act) {r}. This
makes it possible to see these nets as modeétsagtive systemshat interact with their
environment. A transition can be thought of as the occurrence of the actigi If
£(t) € Act, this occurrence can be observed and influenced by theoanvent, but if
£(t) = 7, t is aninternal or silenttransition whose occurrence cannot be observed or
influenced by the environment. Two transitions whose oenges cannot be distin-
guished by the environment are equipped with the same labpérticular, given that
the environment cannot observe the occurrence of intereasitions at all, all of them
have the same label, namely

We use the ternplain netsfor nets where is injective and no transition has the
labelr, i.e. essentially unlabelled nets. Similarly, we speaklafn 7-netsto describe
nets wherel(t) = ¢(u) # 7 = t = u, i.e. nets where every observable action is
produced by a unique transition. In this paper we focus om plats, and give semi-
structural characterisations of classes of plain nets. éfdyever, in defining whether
a net belongs to one of those classes, we study its impleti@rgawhich typically are
plain 7-nets. When proving our impossibility result (Theorem 3 @cton 5) we even
allow arbitrary nets as implementations.

We use the following variation of readiness semantics [@4pmpare the behaviour
of nets.
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Definition 4. Let N = (S, T, F, My, /) be a netgy € Act* andX C IN**",
<o, X > is astep ready paiof N iff

M. My =Z MAM <> AX = {Ae N | ar )

We write Z(N) for the set of all step ready pairs Bf.
Two netsN and N’ arestep readiness equivalel¥ ~4 N', iff Z(N) = Z(N’).

The elements of a sef as above are multisets of actions, but as in all such mudtiset
that will be mentioned in this paper the multiplicity of eaabtion occurrence is at
most 1, we use set notation to denote them.

3 Asynchronous Petri Net Classes

In Petri nets, an inherent concept of simultaneity is buailsince when a transition has
more than one preplace, it can be crucial that tokens arewetrinstantaneously. When
using a Petri net to model a system which is intended to beemehted in a distributed
way, this built-in concept of synchronous interaction maypboblematic.

In this paper, a given net is regarded aspacificatiorof how a system should be-
have, and this specification involves complete synchrdinisaf the firing of a transi-
tion and the removal of all tokens from its preplaces. In $leistion, we propose various
definitions of arasynchronous implementatioh a net/V, in which such synchronous
interaction is wholly or partially ruled out and replaced dsynchronous interaction.
The question to be clarified is whether such an asynchromapiementation faithfully
mimics the dynamic behaviour &f. If this is the case, we call the nat asynchronous
with respect to the chosen interaction pattern.

The above programme, and thus the resulting concept of heymy; is parametrised
by the answers to three questions:

1. Which synchronous interactions do we want to rule out #yac
2. How do we replace synchronous by asynchronous intergctio
3. When does one net faithfully mimic the dynamic behavidwarmther?

To answer the first question we associaleaationto each place and each transition
in a net. A transition may take a token instantaneously frgpneglace (when firing)
iff this preplace is co-located with the transition; if theeplace resides on a different
location than the transition, we have to assume the calledf the token takes time,
and thus the place looses its tokesforethe transition fires.

We model the association of locations to the places anditi@msin a netN =
(S, T, F, My, ¥) as a functionD : SUT — Loc, with Loc a set of possible locations.
We refer to such a function asdéstributionof N. Since the identity of the locations is
irrelevant for our purposes, we can just as well abstrachftoc and represend by
the equivalence relatioa, on S U T given byx =p y iff D(xz) = D(y).

In this paper we do not deal with nets that have a distribubiaitt in. We charac-
terise the interaction patterns we are interested in by simgoparticular restrictions
on the allowed distributions. The implementor of a net camosle any distribution that
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satisfies the chosen requirements, and we call a net asyrmisdor a certain interac-
tion pattern if it has a correct asynchronous implememntatiased on any distribution
satisfying the respective requirements.

The fully asynchronoudnteraction pattern is obtained by requiring that all pkace
and all transitions reside on different locations. This esk necessary to implement
the removal of every token in a time-consuming way. Howetlgs, leads to a rather
small class of asynchronous nets, that falls short for mapjications. We therefore
propose two ways to loosen this requirement, thereby mgldi hierarchy of classes
of asynchronous nets. Both require that all places residdiféerent locations, but a
transition may be co-located with one of its preplaces. §jmemetrically asynchronous
interaction pattern allows this only for transitions wittsiagle preplace, whereas in
the asymmetrically asynchronolsteraction pattern any transition may be co-located
with one of its preplaces. Since two preplaces can never Heceted, this breaks the
symmetry between the preplaces of a transition; an impléoneha net has to choose at
most one preplace for every transition, and co-locate #resttion with it. The removal
of tokens from all other preplaces needs to be implementadiime-consuming way.
Note that all three interaction patterns break the syndbation of the token removal
between the various preplaces.

Definition 5. Let D be a distribution on ané¥ = (S, T, F, My, ¢), and let=p, be the
induced equivalence relation shu T'. We say thatD is
— fully distributed D € Zrp, whenz =p yforx,y € SUT only if x = v,
— symmetrically distributedD € 2sp, when
p=pqforp,qe s only if p = ¢,
t=ppforteT, pe Sonlyif *t = {p} and
t=pufort,ueT onlyift=wordpeS.t=pp=pu,
— asymmetrically distributedD € 2ap, when
p=pgqforp,ge s only if p = g,
t=ppforteT, peSonlyifpe*tand
t=pufort,ueT onlyift=uordpeS.t=pp=pu.

The second question raised above was: How do we replace reyratis by asyn-
chronous interaction? In this section we assume that if argaes from a place to

a transitiont at a different location, a token takes time to move fremo ¢. Formally,
we describe this by inserting silent (unobservable) ttaors between transitions and
their remote preplaces. This leads to the following notibam asynchronous imple-
mentation of a net with respect to a chosen distribution.

Definition 6. Let N = (S, T, F, My, {) be a net, and letp be an equivalence rela-
tion on S U T'. The D-based asynchronous implementatmnV is defined as the net
Ip(N):=(SUST, TUT", F', My, {') with

ST:={s|teT,se sZpt},

TT:={t,|teT, se*t s#pt},

F={(ts)|teT, set*}U{(s,t)|teT, s€t s=pt}

U{(s,ts), (ts, 8t), (s¢,t) |t €T, s €°t, s £p t},
01T =/ and U(ts) =7 for t, €T7.
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Proposition 1. For any (contact-free) nelV, and any choice ofp, the net/p (V) is
contact-free, and satisfies the other requirements impogatkts, listed in Section 2.

Proof. For D € Zrp andD € Zsgp, this is established in [6]. The proof of the general
case goes likewise. O

The above protocol for replacing synchronous by asynchusimteraction appears to
be one of the simplest ones imaginable. More intricate pal) involving many asyn-
chronous messages between a transition and its preplacgd,b= contemplated, but
we will not study them here. Our protocol involves just onetsmessage, namely from
the preplace to its posttransition. It is illustrated in.Fig

N Zrp sp

Fig. 1. Possible results fofp (V) given different requirements

The last question above was: When does one net faithfullyienihe dynamic be-
haviour of another? This asks forsemantic equivalencen Petri nets, telling when
two nets display the same behaviour. Many such equivaldregsbeen studied in the
literature. We believe that most of our results are indepanhdf the precise choice of a
semantic equivalence, as long as it preserves causalitpranghing time to some de-
gree, and abstracts from silent transitions. Thereforele®se one such equivalence,
based on its technical convenience in establishing outtsggund postpone questions
on the effect of varying this equivalence for further resbaOur choice istep readi-
ness equivalencas defined in Section 2. Using this equivalence, we defingiamof
behavioural asynchrony asking whether the asynchronous implementation of a net
preserves its behaviour. This notion is parametrised byliosen interaction pattern,
characterised as a requirement on the allowed distribsition

Definition 7. Let 2 be a requirement on distributions of nets.
A plain net N is behaviourally2-asynchronoudf there exists a distributio of N
meeting the requiremer® such that/,(N) ~¢ N.

Intuitively, the only behavioural difference between a feaind its asynchronous im-
plementatiop (V) can occur when itV a places € *u is marked, whereas ify; (V)
this token is already on its way froato its posttransition:. In that case, it may occur
that a transitiort # « with s € *¢ is enabled inV, whereag is not enabled in the
described state of, (V). We call the situation inV leading to this state ofp(N) a
distributed conflictit is in fact the only circumstance in whidh, (V) fails to faithfully
mimic the dynamic behaviour af.
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Definition 8. Let N = (S, T, F, My, ¢) be a net and a distribution ofN.
N has adistributed conflict with respect tD iff

FueT petN®u.t#uipZpuANIM e [My)n.tC M.

We wish to call a nelv (semi)structurally asynchronoif§the situation outlined above
never occurs, so that the asynchronous implementationmeshange the behaviour
of the net. As for behavioural asynchrony, this notion ofresbyony is parametrised by
the set of allowed distributions.

Definition 9. Let 2 be a requirement on distributions of nets.
A net N is (semi)structurally2-asynchronoudff there exists a distributiorD of N
meeting the requiremer® such thatV has no distributed conflicts with respectifo

The following theorem shows that distributed conflicts dibgcexactly the critical situ-
ations: For all plain nets the notions of structural and b&haal asynchrony coincide,
regardless of the choice &.

Theorem 1. Let N be a plain net, and®? a requirement on distributions of nets. Then
N is behaviourally2-asynchronous iff it is structurally-asynchronous.

Proof. In the full version of this paper [7]. O

Because of this theorem, we call a plain g&asynchronousif it is behaviourally and/or
structurally 2-asynchronous. In this paper we study this concept for piats only.
When taking2 = Z2rp we speak ofully asynchronous netsvhen taking2 = Zsp

of symmetrically asynchronous ngtnd when taking? = Zap of asymmetrically
asynchronous nets

Example 1.The netN of Fig. 1 is not fully asynchronous, for its unigiebased asyn-
chronous implementatiofy, (N) with D € Z¢p (also displayed in Fig. 1) is not step
readiness equivalent f¥. In fact(e, {{b}}) € Z(Ip(N))\ Z(N). This inequivalence
arises because ifi, (V) the option to do am-action can be disabled already before
any visible action takes place; this is not possibléin

The only way to avoid a distributed conflict in this net is bkiteyt =p p =p u.
This is not allowed for any) € 2¢p or D € sp, but it is allowed forD € 2ap (cf.
the last net in Fig. 1). Henck¥ is asymmetrically asynchronous, but not symmetrically
asynchronous.

SinceZrp C 2sp C Zap, any fully asynchronous net is symmetrically asynchronous
and any symmetrically asynchronous net is also asymmbyrasynchronous. Below
we give semi-structural characterisations of these thizsses of nets. The first two
stem from [6], where the class of fully asynchronous netsiled FA(B) and the class

of symmetrically asynchronous nets is cald B). The classAA(B) in [6] is some-
what larger than our class of asymmetrically asynchronats, rfor it is based on a
slightly more involved protocol for replacing synchrondaysasynchronous interaction.
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Definition 10. A plain netN = (S, T, F, My, ¢) has a
— partially reachable confliciff
JHueTIpetNu.t#uANIMe[My)n.*tC M,
— partially reachableN iff
FHueTIpetNu.t#un|®ul >1AIM e [My)n.tC M,
— left and right border reachabl# iff

o, o e o tFUNUFUVADFEGAN
Jtu,veT dpe®tn®u Jge®uno. SMy, My € [Mo) . *t C My A*0 C M.

Theorem 2. Let N be a plain net.

— N is fully asynchronous iff it has no partially reachable cdstfl
— N is symmetrically asynchronous iff it has no partially reablkeN.
— N is asymmetrically asynchronous iff it has no left and rigbtder reachableM.

Proof. Straightforward with Theorem 1. a

In the theory of Petri nets, there have been extensive stuaieclasses of nets with
certain structural properties lilkeee choice net§3, 2] andsimple netg3], as well as
extensions of theses classes. They are closely related tretltlasses defined here, but
they are defined without taking reachability into account.d&comprehensive overview
and discussion of the relations between those purely siralbt defined net classes and
our net classes see [6]. Restricted to plain nets withoud tf@asitions (meaning that
every transitiort satisfies the requiremest\ € [My). *t C M), Theorem 2 says
that a net is fully synchronous iff it is conflict-free in th&ectural sense (no shared
preplaces), symmetrically asynchronous iff it is a freeicmet and asymmetrically
asynchronous iff it is simple.

Our asynchronous net classes are defined for plain nets Dingre are two ap-
proaches to lifting them to labelled nets. One is to postulaat whether a net is asyn-
chronous or not has nothing to do with its labelling functiea that after replacing
this labelling by the identity function one can apply theigids above This way our
structural characterisations (Theorems 1 and 2) applyaellied nets as well. Another
approach would be to apply the notion of behavioural asyoghof Definition 7 di-
rectly to labelled nets. This way more nets will be asyncbrebecause in some cases
a net happens to be equivalent to its asynchronous impleti@min spite of a failure of
structural asynchrony. This happens for instance if afigitions in the original net are
labelledr. Unlike the situation for plain nets, the resulting notidrbehavioural asyn-
chrony will most likely be strongly dependent on the choitthe semantic equivalence
relation between nets.
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4 Distributed Systems

The approach of Section 3 makes a difference between a reetiestjas a specification,
and an asynchronous implementation of the same net. Tl tattild be thought of
as a way to execute the net when a given distribution makesytiehronisations that
are inherent in the specification impossible. In this andftilewing section, on the
other hand, we drop the difference between a net and its hsymaus implementation.
Instead of adapting our intuition about the firing rule whenpiementing a net in a
distributed way, we insist that all synchronisations sfiediin the original net remain
present as synchronisations in a distributed implememtatet, at the same time we
stick to the point of view that it is simply not possible forrartsition to synchronise
its firing with the removal of tokens from preplaces at remotations. Thus we only
allow distributions in which each transition is co-locateith all of its preplaces. We
call such distributionsffectual For effectual distribution®, the implementation trans-
formationIp is the identity. As a consequence, if effectuality is paraabquirement
2 imposed on distributions, the question whether a nétHasynchronous is no longer
dependent on whether an asynchronous implementation siitimécbehaviour of the
given net, but rather on whether the net allows a distribusiatisfying2 at all.

The requirement of effectuality does not combine well wlle trequirements on
distributions proposed in Definition 5. For4? is the class of distributions that are ef-
fectual and asymmetrically distributed, then only net$witt transitions with multiple
preplaces would beZ-asynchronous. This rules out most useful applicationsewfi P
nets. The requirement of effectuality by itself, on the othend, would make every net
asynchronous, because we could assign the same locatibhplacas and transitions.

We impose one more fundamental restriction on distribgtioramely that when
two visible transitions can occur in one step, they cannatdocated. This is based
on the assumption that at a given location visible actiomsardy occur sequentially,
whereas we want to preserve as much concurrency as posdsildedér not to loose
performance). Recall that in Petri nets simultaneity afisidions cannot be enforced: if
two transitions can fire in one step, they can also fire in adgioi he standard interpre-
tation of nets postulates that in such a case those tramsiice causally independent,
and this idea fits well with the idea that they reside at déffedocations.

Definition 11. Let N = (S, T, F, My, ¢) be a net.
Theconcurrency relation— C T? is given byt — u < t # uAIM[Mo). M[{t,u}).
N is distributediff it has a distributionD such that

—-Vse S, teT.se®t =t=ps,

—t—uNnl(t),l(u) #17=t#p u.

It is straightforward to give a semi-structural charadation of this class of nets:

Observation 1. A net is distributed iff there is no sequenge. . .,t, of transitions
withtg — t, and®t;_1 N°*t; #fhfori=1,...,n.

A structure as in the above characterisation of distributets can be considered as
a prolongedM containing two independent transitions that can be simattasly en-
abled.
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Fig. 2. A fully marked M.

Itis not hard to find a plain net that is fully asynchronoug,rya distributed. How-
ever, restricted to plain nets without dead transitionsdlass of asymmetrically asyn-
chronous nets is a strict subclass of the class of distiibo#ts. Namely, if a net is
M-free (where aM is as in Definition 10, but without the reachability condition the
bottom line), then it surely has no sequence as describestabo

5 Distributable Systems

In this section, we will investigate the borderline for distitability of systems. It is a
well known fact that sometimes a global protocol is necgssduen concurrent activi-
ties in a system interfere. In particular, this may be neaxys®r deciding choices in a
coherent way. Consider for example the simple net in Fig. @ntains arM-structure,
which was already exhibited as a problematic one in Sectidmahsitionst andv are
supposed to be concurrently executable (if we do not wanedtrict performance of
the system), and hence reside on different locations. Thleasat one of them, say
cannot be co-located with transitian However, both transitions are in conflict with

As we use nets as models of reactive systems, we allow theoamvént of a net to
influence decisions at runtime by blocking one of the poksés. Equivalently we can
say it is the environment that fires transitions, and thisaag happen for transitions
that are currently enabled in the net. If the net decideséatwandu before the actual
execution of the chosen transition, the environment mipahge its mind in between,
leading to a state of deadlock. Therefore we work in a brargckime semantics, in
which the option to perform stays open until eitheror v occurs. Hence the decision
to fire u can only be taken at the location of namely by firingu, and similarly for
t. Assuming that it takes time to propagate any message fraamation to another,
in no distributed implementation of this net caandu be simultaneously enabled, be-
cause in that case we cannot exclude that both of them hapbes, the only possible
implementation of the choice betweemandw is to alternate the right to fire between
t andu, by sending messages between them (cf. Fig. 3). But if theamwent only
sporadically tries to fire or u it may repeatedly miss the opportunity to do so, leading
to an infinite loop of control messages sent back and fortiowi either transition ever
firing.

In this section we will formalise this reasoning, and shoatthnder a few mild
assumptions this type of structures cannot be implementeddistributed manner at
all, i.e. even when we allow the implementation to be conghjainrelated to the spec-
ification, except for its behaviour. For this, we apply théiow of a distributed net, as
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Fig. 3. A busy-wait implementation of the net in Fig. 2

introduced in the previous section. Furthermore, we neesjaivalence notion in order
to specify in which way an implementation as a distributetiseequired to preserve
the behaviour of the original net. As in Section 3, we chotse readiness equivalence.
We call a plain nedistributableif it is step readiness equivalent to a distributed net.
We speak of a@ruly synchronouset if it is not distributable, thus if it may not be trans-
formed into any distributed net with the same behaviour ugtép readiness equiva-
lence, that is if no such net exists. We study the conceptridigable” for plain nets
only, but in order to get the largest class possible we allon+plain implementations,
where a given transition may be split into multiple tramsis carrying the same label.

Definition 12. A plain netN is truly synchronoudf there exists no distributed né¢’
which is step readiness equivalent{o

We will show that nets like the one of Fig. 2 are truly synctoos.

Step readiness equivalence is one of the simplest and lsasinginating equiva-
lences imaginable that preserves branching time, caysalit divergence to some small
extend. Our impossibility result, formalised below as Tieeo 3, depends crucially on
all three properties, and thus needs to be reconsidered gitieg up on any of them.
When working in linear time semantics, every net is equivate an infinite net that
starts with a choice between severaransitions, each followed by a conflict-free net
modelling a single run. This net iN-free, and hence distributed. It can be argued
that infinite implementations are not acceptable, but wheamching for the theoreti-
cal limits to distributed implementability we don’t want tole them out dogmatically.
When working in interleaving semantics, any net can be atedénto an equivalent
distributed net by removing all concurrency between titorss. This can be accom-
plished by adding a new, initially marked place, with an aratd from every transition
in the net. When fully abstracting from divergence, evenmespecting causality and
branching time, the net of Fig. 2 is equivalent to the distiélol net of Fig. 3, and in
fact it is not hard to see that this type of implementationdsgibly for any given net.
Yet, the implementation is suspect, as the implementedidecdf a choice may fail to
terminate. The claus®/ -~ in Definition 4 is strong enough to rule out this type of
implementation, even though our step readiness sematstsaats from other forms
of divergence.

We now characterise the class of nets which we will prove tyldg synchronous.
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Definition 13. Let N = (S, T, F, My, £) be a netN has &ully reachable visible pure
Miff 3t,u,v e T.*tNu#DAun®v#OAtN 0 =0 ALE), L(u), L(v) #T A
IM € [Mp). *tU*uU®v C M.

Here apureM is anM as in Definition 10 that moreover satisflgs)*v = (), and hence
p & *v, g € °t andt # v. These requirements follow from the conditions above.

Proposition 2. A net with a fully reachable visible puid is not distributed.

Proof. Let N = (S, T, F, My, ¢) be a net that has a fully reachable visible phfeso
there exist,u,v € T andp,q € S suchthap € *tN®uAqge®un®vA*tN®v =10
and3M € [My). *t U*uU*v C M. Thent — v. SupposeV is distributed by the
distributionD. Thent =p p =p u =p q =p v butt — vimpliest #p v. 4 O

Now we show that fully reachable visible pukés that are present in a plain net are
preserved under step readiness equivalence.

Lemmal. LetN = (S,T, F, My, ¢) be a plain net. IfN has a fully reachable visible
pure M, there exists<o, X> € Z(N) such thatda,b,c € Act. a # ¢ A {b} € X A
{a,c} € X AN{a,b} ¢ X A{b,c} ¢ X. (Itisimplied thata # b # ¢.)

Proof. N has a fully reachable visible puké, so there exist, u,v € T andM € [My)
suchthatin®u # OA*un®v # DA tN* v = OAL(t), L(u), £(v) # TA*tU uU®v C M.
Leto € Act* such thatV, == M. SinceN is a plain netM —~— and/((t) # ((u) #
¢(v) # £(t). Hence there exists aXi C IN**! such thatco, X > € Z(N) A {l(u)} € X A

{(t),L(v)} € X A{l(t), b(u)} & X A {l(u),L(v)} ¢ X. O

Lemma 2. Let N = (S, T, F, My, ) be a net. If there existso, X> € Z(N) such
that3a,b,c € Act. a # cA{b} € X AN {a,c} € X AMa,b} ¢ X A{b,c} ¢ X,thenN
has a fully reachable visible puid.

Proof. Let M C S be the marking wh|ch %ave rise to the step ready pair X >, i.e.
a,b

Mo =Zs M andM 2 A s 12 A (e}

Asa #£b#c+#a there must eX|st three transnmtm,v € T with £(t) = a
ANl(u) =bAL(v) = candM [{u}) AM[{t, v}) A=(M[{t,u})) A=(M[{u,v})). From
M[{u}) N M[{t,v}) follows *t U *u U *v C M. FromM [{t,v}) follows *t N *v = 0.
From—(M[{t,u})) then follows*t N *u # 0 and analogously for andv. HenceN
has a fully reachable visible puké. O

Note that the lemmas above give a behavioural property tngi&in nets is equivalent
to having a fully reachable visible puké.

Theorem 3. A plain net with a fully reachable visible pubé is truly synchronous.

Proof. Let N be a plain net which has a fully reachable visible phteLet N’ be a
net which is step readiness equivalenffoBy Lemma 1 and Lemma 2, alg¥’ has a
fully reachable visible purt. By Proposition 2N’ is not distributed. ThuéV is truly
synchronous. a
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Fig. 4. An example net

Theorem 3 gives an upper bound of the class of distributadtie Me conjecture that
this upper bound is tight, and a plain net is distributabiét ihas no fully reachable
visible pureM.

Conjecture 1A plain net is truly synchronous iff it has a fully reachabisible pureM.

In the following, we give a lower bound of distributability providing a protocol to
implement certain kinds of plain nets distributedly. Themplementations do not add
additional labelled transitions, but only provide the &rigones with a communication
protocol in the form ofr-transitions. Hence these implementations pertain to mmot
of distributability in which we restrict implementatiorsibe plainr-nets. Note that this
does not apply to the impossibility result above.

Definition 14. A plain net N is plain-distributableiff there exists a distributed plain
T-net N which is step readiness equivalent{o

Definition 15. Let N = (S, T, F, My, ¢) be a net. We define trenabled conflict rela-
tion# C T? ast # u < 3IM € [Mp). M[{t}) A M[{u}) A ~(M[{t,u})).

We now propose the following protocol for implementing né&s example depicting

it can be found in Fig. 5. As locations we take the places irvarghet, and the equiva-
lence classes of transitions that are related by the refieid transitive closure of the
enabled conflict relation. We locate every transittan its equivalence class, whereas
every place gets a private location. Every plaaill have an embassy! in every lo-
cation[t] where one of its posttransitions s® resides. As soon asreceives a token, it
will distribute this information to its posttransitions pjacing a token in each of these
embassies. The arc frosto ¢ is now replaced by an arc fros¥! to ¢, so if ¢ could fire

in the original net it can also fire in the implementation. &othe construction allows
two transitions in different locations that shared the prefition s to fire concurrently,
although they were in conflict in the original net. Howevérthis situation actually
occurs, these transitions would have been in an enabledatpafid thus assigned to
the same location. The rest of the construction is a mattgadfage collection. If a
transitiont fires, for each of it preplaces all tokens that are still present in the various
embassies of in locations[u] need to be removed from there. This is done by a special
internal transitiort"’. Once all these transitions (for the various choices ahd [u])
have fired, an internal transitighoccurs, which puts tokens in all the postplaces. of
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Fig. 5. A distributed implementation for the net in Fig. 4, partitiog into localities shown by
dashed lines

Definition 16. Let N = (S, T, F, My, ¢) be a plain net. Left] := {u € T | t #* u}.
The transition-controlled-choice implementation/éfis defined to be the plain-net
N :=(SUS™, TUT", F', My, ?) with
ST ::{s[t]|s€St€s'}U{@|t€T}U

(sl 5 | ses, tuest [u] # 1)
TT:={[s]|seStu{t'|teT}u

(tM | se S, tiues®, [u] # [t]}
F' = {(s, )|seS}U

{([5],s"), (s, t) | s e S;t e s*} U
{(t.), @t )|teT}u
{(
(t,

ts)|teT,set*}U
{(, s, (sI ¢), el 51y, 50 4, (s e1) | s € S, tue s®, [u] # (1]}
1T =¢andl!(T7) = {7}.
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Theorem 4. A plain netN is plain distributable iff4#* N — = (.

Proof (sketch).“=": When implementing a plain neé¥ = (S, T, F, My, ¢) by a plain
mnetN’ = (8", 7', F', M|, ') that is step readiness equivalentg the # and —
relations between the transitions &f also exists between the corresponding visible
transitions ofV’. This is easiest to see when writing, resp.a -, to denote a transition

in N, resp.N’, with labela, which must be unique sinc¥ is a plain net, respV’ a
plainT-net. Namely ifa y # by, thenN has a step ready paito, X > with {a},{b}eX

but {a,b} ¢ X. This must also be a step ready pairf, and henceiy: # by .
Likewise,an — by impliesay: — by.

Thus if #* N — # () holds in NV, then the same is the case f§if, and henceV’ is
not distributed by Observation 1.

“<"If #£*N— =, N can be implemented as specified in Definition 16. In fact,
the transition-controlled-choice implementation of amt NV yields a net that is step
readiness equivalent . See the full version of this paper [7] for a formal proof of
this claim. Moreover, ift* N— = () it never happens that concurrent visible transitions
are co-located, and hence the implementation will be pléstributed. a

Our definition of distributed nets only enforces concurractions to be on different
locations if they are visible, and our implementation in D&idn 16 produces nets
which actually contain concurrent unobservable activittha same location. If this is
undesired it can easily be amended by adding a single mat&ed o every location
and connecting that place to every transition on that loodtly a self-loop. While this
approach will introduce new causality relations, step iegb equivalence will not
detect this.

6 Conclusion

In this paper, we have characterised different grades ofcisgny in Petri nets in terms
of structural and behavioural properties of nets. Moreoverhave given both an upper
and a lower bound of distributability of behaviours. In jpartar we have shown that
some branching-time behaviours cannot be exhibited bytahlited system.

We did not consider connections from transitions to thestplaces as relevant to
determine asynchrony and distributability. This is beeaws only discussed contact-
free nets where no synchronisation by postplaces is nagessahe spirit of Defini-
tion 6 we could insert-transitions on any or all arcs from transitions to theirtptaces,
and the resulting net would always be equivalent to the oaigi

We have already given a short overview on related work intit@duction of this
paper. Most closely related to our approach are severa dhevork using Petri nets as
a model of reactive systems.

As mentioned in Section 3, classes of nets with certain stratproperties like
free choice net§3, 2] andsimple netg3], as well as extensions of theses classes, have
been extensively studied in Petri net theory, and are glasghted to the classes of
nets defined here. In [3], Eike Best and Mike Shields intredvarious transforma-
tions between free choice nets, simple nets and extendé&htathereof. They use
“essential equivalence” to compare the behaviour of diffémets, which they only
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o b

Fig. 6. A specification and its Hopkins-implementation which addedcurrency.

give informally. This equivalence is insensitive to divenge, which is relied upon in
their transformations. It also does not preserve concaytemhich makes it possible
to implementbehavioural free choice netthat may feature a fully reachable visible
M, as free choice nets. They continue to show conditions wwbah liveness can be
guaranteed for many of these classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jorg Desel inttuce two extensions
to extended simple nets, by excluding self-loops from tlguiements imposed on
extended simple nets. This however assumes a kind of “aitythit self-loops, which
we did not allow in this paper. In particular we do not imglicassume that a transition
will not change the state of a place it is connected to by aleelf, since in case of
deadlock, the temporary removal of a token from such a pldagatmot be temporary
indeed.

In [16], Wolfgang Reisig introduces a class of systems witiaimmunicate using
buffers and where the relative speeds of different compisnare guaranteed to be
irrelevant. The resulting nets are simple nets. He thengads introducing a decision
procedure for the problem whether a marking exists whicheadlke complete system
live.

Dirk Taubner has in [18] given various protocols by whichrgplement arbitrary
Petri nets in the OCCAM programming language. Althoughphiggramming language
offers synchronous communication he makes no substarsgabfithat feature in the
protocols, thereby effectively providing an asynchronouslementation of Petri nets.
He does not indicate a specific equivalence relation, bufestévely using linear-time
equivalences to compare implementations to the specditati

The work most similar to our approach we have found is the gniddpkins, [9].
There he already classified nets by whether they are implbkrby a net distributed
among different locations. He uses an interleaving egenad to compare an imple-
mentation to the original net, and while allowing a rangemopiementations, he does
require them to inherit some of the structure of the origiretl The net classes he de-
scribes in his paper are larger than those of Section 3 bedsuallows more general
interaction patterns, but they are incomparable with thafsgection 5. One direction
of this inequality depends on his choice of interleaving aetics, which allows the
implementation in Fig. 6. The step readiness equivalencasgedoes not tolerate the
added concurrency and the depicted net is not distributaldar sense. The other di-
rection of the inequality stems from the fact that we allovpiementations which do
not share structure with the specification but only emulatbéhaviour. That way, the
net in Fig. 7 can be implemented in our approach as depicted.
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()

2] [o] [

Fig. 7. A distributable net which is not considered distributalol¢d], and its implementation.

Still many open questions remain. While our impossibiliégult holds even when
allowing labelled nets as implementations, our charegdédn in Theorem 4 only con-
siders unlabelled ones. This begs the question which cfasst® can be implemented
using labelled nets. We conjecture that a distributed implatation exists for every net
which has no fully reachable visible puké We also conjecture that if we allow linear
time correct implementations, all nets become distridetaden when only allowing
finite implementations of finite nets. We are currently wagkon both problems.

Just as a distributable net is defined as a net that is behallioequivalent to,
or implementable by, a distributed net, one could defineasynchronously imple-
mentablenet as one that is implementable by an asynchronous net.cbhisept is
again parametrised by the choice of an interaction pattemould be an interesting
guest to characterise the various classes of asynchrgrioygementable plain nets.

Also, extending our work to nets that are not required to lsafe-will probably
generate interesting results, as conflict resolution paitomust keep track of which
token they are currently resolving the conflict of.

In regard to practical applicability of our results, it wdube very interesting to
relate our Petri net based terminology to hardware degoniptin chip design. Es-
pecially in modern multi-core architectures performareasons often prohibit using
global clocks while a fagade of synchrony must still be ugdlie the abstract view of
the system.

On a higher level of applications, we expect our results taiseful for language
design. To start off, we would like to make a thorough congaariof our results to
those on communication patterns in process algebrasomsrsif ther-calculus and
I/O-automata [12]. Using a Petri net semantics of a suitalgktem description lan-
guage, we could compare our net classes to the class of natsssible in the lan-
guage, especially when restricting the allowed commuitingiatterns in the various
ways considered in [4] or in [12]. Furthermore, we are ind&zd in applying our results
to graphical formalisms for system design like UML sequedieggrams or activity di-
agrams, also by applying their Petri net semantics. Outtsebacome relevant when
such formalisms are used for the design of distributed syst&ertain choice con-
structs become problematic then, as they rely on a globaharésm for consistent
choice resolution; this could be made explicit in our frargw
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